4.6 Article

Compensation for Reflectance Variation in Vessel Density Quantification by Optical Coherence Tomography Angiography

期刊

INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE
卷 57, 期 10, 页码 4485-4492

出版社

ASSOC RESEARCH VISION OPHTHALMOLOGY INC
DOI: 10.1167/iovs.16-20080

关键词

optical coherence tomography; optical coherence tomography angiography; reflectance compensation; vessel density; retina

资金

  1. National Institutes of Health (Bethesda, MD, USA) [DP3 DK104397, R01 EY024544, R01 EY023285, P30 EY010572]
  2. Research to Prevent Blindness (New York, NY, USA)

向作者/读者索取更多资源

PURPOSE. To compensate for reflectance variation when quantifying vessel density by optical coherence tomography angiography (OCTA). METHODS. Healthy participants received 636-mm macular and 4.534.5-mm optic nerve head (ONH) angiography scans on a 70-kHz spectral-domain optical coherence tomography system. The split-spectrum amplitude-decorrelation angiography (SSADA) algorithm was used to compute the OCTA signal. Mean reflectance projection and maximum decorrelation projection were used to create en face OCT and OCTA images. Background OCTA noise in static tissue was evaluated in the foveal avascular zone (FAZ). Vessel density was calculated from en face retinal OCTA that was binarized according to a decorrelation threshold. RESULTS. The average retinal decorrelation noise in the FAZ was linearly related to the average logarithmic-scale OCT reflectance signal. Based on this relationship, a reflectance-adjusted decorrelation threshold equation was developed to filter out 97.5% of background OCTA noise. A fixed threshold was also used for comparison. The superficial vascular complex vessel density in the macula and ONH were significantly correlated with reflectance signal strength index (SSI) using the fixed threshold. This correlation was removed by using the reflectance-adjusted threshold. Reflectance compensation reduced population variation in 25 healthy eyes from 8.5% to 4.8% (coefficient of variation) in the macula and from 6.7% to 5.4% in the peripapillary region. Within-visit repeatability also improved from 4.4% to 1.8% in the macula and from 3% to 1.7% in the peripapillary region. CONCLUSIONS. Compensating for reflectance variation resulted in more reliable vessel density quantification in OCTA.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据