4.7 Article

Innovation in Resourcing Geological Materials as Crop Nutrients

期刊

NATURAL RESOURCES RESEARCH
卷 27, 期 2, 页码 217-227

出版社

SPRINGER
DOI: 10.1007/s11053-017-9347-2

关键词

Population growth; Urban development; Food security; Nitrogen; Phosphorus; Potassium

资金

  1. Terrativa Minerais SA
  2. Rochagem movement

向作者/读者索取更多资源

Mineral resources are fundamental to the growth and development of human society. Extraction of metal ores has risen very slightly as a proportion of all resources, while construction and industrial mineral extraction has grown much more rapidly. This reflects growth in GDP, which is much faster than population growth, in turn reflecting improved standards of living, growth in urban housing/infrastructure and growth in the consumer society. Fertilizer minerals in particular are essential resources for production of the food needed by an increasing global population. Nitrogen fertilizer manufacture requires fossil fuels-especially natural gas (methane) as a source of the hydrogen needed for the Haber-Bosch process. Phosphate fertilizers are predominantly manufactured using phosphate rock as a source of phosphoric acid, and there is scope to recover phosphorus from contaminated waters. Potassium fertilizers are produced from evaporite deposits, mainly in the global north. It is difficult for poorer countries with deeply leached soils to access and make efficient use of existing conventional products. Globally, while N and P fertilizer application replaces the nutrient removed by crops and so is in balance, twice as much K is being removed from soils as is being replaced. This leads to the need for innovation in developing novel sources of K, especially to support agricultural production in the global south. Rocks containing K silicate minerals (such as feldspar and nepheline) occur widely as potential sources of K for use in soils where these minerals weather rapidly. Observations of surface corrosion in feldspars taken from soils after 10 years exposure to soil microbial systems demonstrates rates of dissolution 4 orders of magnitude greater than determined in the laboratory. Innovation in use of these minerals depends on an understanding of the role of microbial processes in silicate mineral decomposition.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据