3.8 Proceedings Paper

Germanium Collimating micro-Channel Arrays For High Resolution, High Energy Confocal X-ray Fluorescence Microscopy

出版社

AMER INST PHYSICS
DOI: 10.1063/1.4961132

关键词

-

向作者/读者索取更多资源

Confocal x-ray fluorescence microscopy (CXRF) allows direct detection of x-ray fluorescence from a micron-scale 3D volume of an extended, unthinned sample. We have previously demonstrated the use of a novel collection optic, fabricated from silicon, that improves the spatial resolution of this approach by an order of magnitude over CXRF using polycapillaries. The optic, called a collimating channel array (CCA), consists of micron-scale, lithographically-fabricated arrays of collimating channels, all directed towards a single source position. Due to the limited absorbing power of silicon, the useful energy range of these optics was limited to fluorescence emission below about 10 keV. Here, we report fabrication of CCAs from germanium substrates, and demonstrate their practical use for CXRF up to 20 keV. Specifically we demonstrate a nearly energy-independent critical spatial resolution d(R) of 2.1 +/- 0.17 mu m from 2-20 keV, as well as excellent background reduction compared to silicon-based CCAs throughout this energy range. Design details of the optic and background-reduction holder are described. Two versions of the optic are now available upon request at the beamline 20ID-B, Advanced Photon Source (APS) - Argonne National Laboratory.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据