4.5 Review

How landscape organization and scale shape catchment hydrology and biogeochemistry: insights from a long-term catchment study

期刊

出版社

WILEY
DOI: 10.1002/wat2.1265

关键词

-

资金

  1. Swedish Science Foundation (VR) through SITES
  2. Kempe Foundation
  3. KAW
  4. SKB

向作者/读者索取更多资源

Catchment science plays a critical role in the protection of water resources in the face of ongoing changes in climate, long-range transport of air pollutants, and land use. Addressing these challenges, however, requires improved understanding of how, when, and where changes in water quantity and quality occur within river networks. To reach these goals, we must recognize how different catchment features are organized to regulate surface chemistry at multiple scales, from processes controlling headwaters, to the downstream mixing of water from multiple landscape sources and deep aquifers. Here we synthesize 30-years of hydrological and biogeochemical research from the Krycklan catchment study (KCS) in northern Sweden to demonstrate the benefits of coupling long-term monitoring with multi-scale research to advance our understanding of catchment functioning across space and time. We show that the regulation of hydrological and biogeochemical patterns in the KCS can be decomposed into four, hierarchically structured landscape features that include: (1) transmissivity and reactivity of dominant source layers within riparian soils, (2) spatial arrangement of groundwater input zones that govern water and solute fluxes at reach- to segment-scales, (3) landscape scale heterogeneity (forests, mires, and lakes) that generates unique biogeochemical signals downstream, and (4) broad-scale mixing of surface streams with deep groundwater contributions. While this set of features are perhaps specific to the study region, analogous hierarchical controls are likely to be widespread. Resolving these scale dependent processes is important for predicting how, when, and where different environmental changes may influence patterns of surface water chemistry within river networks. (C) 2017 Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据