4.6 Article

Cooperative eigenmodes and scattering in one-dimensional atomic arrays

期刊

PHYSICAL REVIEW A
卷 94, 期 4, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.94.043844

关键词

-

资金

  1. UK EPSRC [EP/L023024/1]
  2. Engineering and Physical Sciences Research Council [EP/L023024/1, 1211924] Funding Source: researchfish
  3. EPSRC [EP/L023024/1] Funding Source: UKRI

向作者/读者索取更多资源

Collective coupling between dipoles can dramatically modify the optical response of a medium. Such effects depend strongly on the geometry of the medium and the polarization of the light. Using a classical coupled dipole model, here we investigate the simplest case of one-dimensional arrays of interacting atomic dipoles driven by a weak laser field. Changing the polarization and direction of the driving field allows us to separately address superradiant, subradiant, redshifted, and blueshifted eigenmodes, as well as observe strong Fano-like interferences between different modes. The cooperative eigenvectors can be characterized by the phase difference between nearest-neighbor dipoles, ranging from all oscillating in phase to all oscillating out of phase with their nearest neighbors. Investigating the eigenvalue behavior as a function of atom number and lattice spacing, we find that certain eigenmodes of an infinite atomic chain have the same decay rate as a single atom between two mirrors. The effects we observe provide a framework for collective control of the optical response of a medium, giving insight into the behavior of more complicated geometries, as well as providing further evidence for the dipolar analog of cavity QED.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据