4.8 Review

Mechanical properties of Fe-rich Si alloy from Hamiltonian

期刊

NPJ COMPUTATIONAL MATERIALS
卷 3, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41524-017-0012-4

关键词

-

资金

  1. Elements Strategy Initiative for Structural Materials (ESISM) through MEXT, Japan
  2. JST Industry-Academia Collaborative Programs, Materials Strength from Hamiltonian
  3. RIKEN Advanced Institute for Computational Science through the HPCI System Research project [hp150235, hp130016, hp140233]
  4. Computational Materials Science Initiative (CMSI), MEXT, Japan
  5. Grants-in-Aid for Scientific Research [17K06783, 15K14103, 26289227] Funding Source: KAKEN

向作者/读者索取更多资源

The physical origins of the mechanical properties of Fe-rich Si alloys are investigated by combining electronic structure calculations with statistical mechanics means such as the cluster variation method, molecular dynamics simulation, etc, applied to homogeneous and heterogeneous systems. Firstly, we examined the elastic properties based on electronic structure calculations in a homogeneous system and attributed the physical origin of the loss of ductility with increasing Si content to the combined effects of magneto-volume and DO3 ordering. As a typical example of a heterogeneity forming a microstructure, we focus on grain boundaries, and segregation behavior of Si atoms is studied through high-precision electronic structure calculations. Two kinds of segregation sites are identified: looser and tighter sites. Depending on the site, different segregation mechanisms are revealed. Finally, the dislocation behavior in the Fe-Si alloy is investigated mainly by molecular dynamics simulations combined with electronic structure calculations. The solid-solution hardening and softening are interpreted in terms of two kinds of energy barriers for kink nucleation and migration on a screw dislocation line. Furthermore, the clue to the peculiar work hardening behavior is discussed based on kinetic Monte Carlo simulations by focusing on the preferential selection of slip planes triggered by kink nucleation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据