4.8 Article

A high-throughput framework for determining adsorption energies on solid surfaces

期刊

NPJ COMPUTATIONAL MATERIALS
卷 3, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41524-017-0017-z

关键词

-

向作者/读者索取更多资源

In this work, we present a high-throughput workflow for calculation of adsorption energies on solid surfaces using density functional theory. Using open-source computational tools from the Materials Project infrastructure, we automate the procedure of constructing symmetrically distinct adsorbate configurations for arbitrary slabs. These algorithms are further used to construct and run workflows in a standard, automated way such that user intervention in the simulation procedure is minimal. To validate our approach, we compare results from our workflow to previous experimental and theoretical benchmarks from the CE27 database of chemisorption energies on solid surfaces. These benchmarks also illustrate how the task of performing and managing over 200 individual density functional theory calculations may be reduced to a single submission procedure and subsequent analysis. By enabling more efficient high-throughput computations of adsorption energies, these tools will accelerate theory-guided discovery of advanced materials for applications in catalysis and surface science.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据