4.8 Article

Compressed glassy carbon: An ultrastrong and elastic interpenetrating graphene network

期刊

SCIENCE ADVANCES
卷 3, 期 6, 页码 -

出版社

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/sciadv.1603213

关键词

-

资金

  1. National Natural Science Foundation of China [51672238, 51421091, 51525205, 51332005, 51272227]
  2. National Basic Research Program of China [2011CB808205]
  3. NSF for Distinguished Young Scholars of Hebei Province of China [E2014203150]
  4. Postgraduate Innovation Project of Hebei Province of China [00302-6370007]
  5. Defense Advanced Research Projects Agency [W31P4Q-13-1-0005]
  6. U.S. Department of Energy (DOE), Office of Science [DE-SC0001057]
  7. NSF [EAR-0968456, 1214376, 1361276]
  8. DOE-NNSA [DE-NA0001974]
  9. DOE-BES [DE-FG02-99ER45775, DE-AC02-06CH11357]
  10. NSF
  11. Division Of Earth Sciences
  12. Directorate For Geosciences [1361327] Funding Source: National Science Foundation

向作者/读者索取更多资源

Carbon's unique ability to have both sp(2) and sp(3) bonding states gives rise to a range of physical attributes, including excellent mechanical and electrical properties. We show that a series of lightweight, ultrastrong, hard, elastic, and conductive carbons are recovered after compressing sp(2)-hybridized glassy carbon at various temperatures. Compression induces the local buckling of graphene sheets through sp(3) nodes to form interpenetrating graphene networks with long-range disorder and short-range order on the nanometer scale. The compressed glassy carbons have extraordinary specific compressive strengths-more than two times that of commonly used ceramics-and simultaneously exhibit robust elastic recovery in response to local deformations. This type of carbon is an optimal ultralight, ultrastrong material for a wide range of multifunctional applications, and the synthesis methodology demonstrates potential to access entirely new metastable materials with exceptional properties.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据