4.8 Article

Heterojunction oxide thin-film transistors with unprecedented electron mobility grown from solution

期刊

SCIENCE ADVANCES
卷 3, 期 3, 页码 -

出版社

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/sciadv.1602640

关键词

-

资金

  1. European Research Council AMPRO [280221]
  2. European Research Council (ERC) [280221] Funding Source: European Research Council (ERC)
  3. Engineering and Physical Sciences Research Council [EP/J021199/1] Funding Source: researchfish
  4. EPSRC [EP/J021199/1] Funding Source: UKRI

向作者/读者索取更多资源

Thin-film transistors made of solution-processedmetal oxide semiconductors hold great promise for application in the emerging sector of large-area electronics. However, further advancement of the technology is hindered by limitations associated with the extrinsic electron transport properties of the often defect-prone oxides. We overcome this limitation by replacing the single-layer semiconductor channel with a low-dimensional, solution-grown In2O3/ZnO heterojunction. We find that In2O3/ZnO transistors exhibit band-like electron transport, with mobility values significantly higher than single-layer In2O3 and ZnO devices by a factor of 2 to 100. This marked improvement is shown to originate from the presence of free electrons confined on the plane of the atomically sharp heterointerface induced by the large conduction band offset between In2O3 and ZnO. Our finding underscores engineering of solution-grown metal oxide heterointerfaces as an alternative strategy to thin-film transistor development and has the potential for widespread technological applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据