4.8 Article

Decoupling of microbial carbon, nitrogen, and phosphorus cycling in response to extreme temperature events

期刊

SCIENCE ADVANCES
卷 3, 期 5, 页码 -

出版社

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/sciadv.1602781

关键词

-

资金

  1. National Research Network Linking microbial diversity and functions across scales and ecosystems (MICDIF) - Austrian Research Fund (FWF) [S-10007-B01, S-10007-B06, S-10007-B07]
  2. University of Vienna
  3. Vienna Anniversary Foundation for Higher Education [H-2485/2012]
  4. DOC-fFORTE research fellowship of the Austrian Academy of Sciences (OAW)
  5. AXA Research Fund

向作者/读者索取更多资源

Predicted changes in the intensity and frequency of climate extremes urge a better mechanistic understanding of the stress response of microbially mediated carbon (C) and nutrient cycling processes. We analyzed the resistance and resilience of microbial C, nitrogen (N), and phosphorus (P) cycling processes and microbial community composition in decomposing plant litter to transient, but severe, temperature disturbances, namely, freeze-thaw and heat. Disturbances led temporarily to a more rapid cycling of C and N but caused a down-regulation of P cycling. In contrast to the fast recovery of the initially stimulated C and N processes, we found a slow recovery of P mineralization rates, which was not accompanied by significant changes in community composition. The functional and structural responses to the two distinct temperature disturbances were markedly similar, suggesting that direct negative physical effects and costs associated with the stress response were comparable. Moreover, the stress response of extracellular enzyme activities, but not that of intracellular microbial processes (for example, respiration or N mineralization), was dependent on the nutrient content of the resource through its effect on microbial physiology and community composition. Our laboratory study provides novel insights into the mechanisms of microbial functional stress responses that can serve as a basis for field studies and, in particular, illustrates the need for a closer integration of microbial C-N-P interactions into climate extremes research.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据