4.8 Article

Transforming from planar to three-dimensional lithium with flowable interphase for solid lithium metal batteries

期刊

SCIENCE ADVANCES
卷 3, 期 10, 页码 -

出版社

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/sciadv.aao0713

关键词

-

资金

  1. Assistant Secretary for Energy Efficiency and Renewable Energy
  2. Office of Vehicle Technologies of the U.S. Department of Energy, under the Battery Materials Research program
  3. Battery 500 Consortium program

向作者/读者索取更多资源

Solid-state lithium (Li) metal batteries are prominent among next-generation energy storage technologies due to their significantly high energy density and reduced safety risks. Previously, solid electrolytes have been intensively studied and several materials with high ionic conductivity have been identified. However, there are still at least three obstacles before making the Li metal foil-based solid-state systems viable, namely, high interfacial resistance at the Li/electrolyte interface, low areal capacity, and poor power output. The problems are addressed by incorporating a flowable interfacial layer and three-dimensional Li into the system. The flowable interfacial layer can accommodate the interfacial fluctuation and guarantee excellent adhesion at all time, whereas the three-dimensional Li significantly reduces the interfacial fluctuation from the whole electrode level (tens of micrometers) to local scale (submicrometer) and also decreases the effective current density for high-capacity and high-power operations. As a consequence, both symmetric and full-cell configurations can achieve greatly improved electrochemical performances in comparison to the conventional Li foil, which are among the best reported values in the literature. Noticeably, solid-state full cells paired with high-mass loading LiFePO4 exhibited, at 80 degrees C, a satisfactory specific capacity even at a rate of 5 C (110 mA.hour g(-1)) and a capacity retention of 93.6% after 300 cycles at a current density of 3 mA cm(-2) using a composite solid electrolyte middle layer. In addition, when a ceramic electrolyte middle layer was adopted, stable cycling with greatly improved capacity could even be realized at room temperature.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据