4.8 Article

Three-dimensional microarchitected materials and devices using nanoparticle assembly by pointwise spatial printing

期刊

SCIENCE ADVANCES
卷 3, 期 3, 页码 -

出版社

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/sciadv.1601986

关键词

-

资金

  1. NSF [CMMI-1563546]
  2. Washington University start-up funds
  3. Directorate For Engineering
  4. Div Of Civil, Mechanical, & Manufact Inn [1563546] Funding Source: National Science Foundation

向作者/读者索取更多资源

Three-dimensional (3D) hierarchical materials are important to a wide range of emerging technological applications. We report a method to synthesize complex 3D microengineered materials, such as microlattices, with nearly fully dense truss elements with a minimum diameter of approximately 20 mm and having high aspect ratios (up to 20: 1) without using any templating or supporting materials. By varying the postprocessing conditions, we have also introduced an additional control over the internal porosity of the truss elements to demonstrate a hierarchical porous structure with an overall void size and feature size control of over five orders of magnitudes in length scale. The method uses direct printing of nanoparticle dispersions using the Aerosol Jet technology in 3D space without templating or supporting materials followed by binder removal and sintering. In addition to 3D microlattices, we have also demonstrated directly printed stretchable interconnects, spirals, and pillars. This assembly method could be implemented by a variety of microdroplet generation methods for fast and large-scale fabrication of the hierarchical materials for applications in tissue engineering, ultralight or multifunctional materials, microfluidics, and micro-optoelectronics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据