4.8 Article

Large polarons in lead halide perovskites

期刊

SCIENCE ADVANCES
卷 3, 期 8, 页码 -

出版社

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/sciadv.1701217

关键词

-

资金

  1. U.S. Department of Energy, Office of Science, Basic Energy Sciences [ER46980]
  2. U.S. Air Force Office of Scientific Research [FA9550-14-1-0381]
  3. U.S. Department of Energy Office of Science Facility, at Brookhaven National Laboratory [DE-SC0012704]
  4. Japan Society for the Promotion of Science
  5. Ministry of University and Scientific Research Decreto Direttoriale [20155LECAJ]

向作者/读者索取更多资源

Lead halide perovskites show marked defect tolerance responsible for their excellent optoelectronic properties. These properties might be explained by the formation of large polarons, but how they are formed and whether organic cations are essential remain open questions. We provide a direct time domain view of large polaron formation in single-crystal lead bromide perovskites CH3NH3PbBr3 and CsPbBr3. We found that large polaron forms predominantly from the deformation of the PbBr3 - frameworks, irrespective of the cation type. The difference lies in the polaron formation time, which, in CH3NH3PbBr3 (0.3 ps), is less than half of that in CsPbBr3 (0.7 ps). First-principles calculations confirm large polaron formation, identify the Pb-Br-Pb deformation modes as responsible, and explain quantitatively the rate difference between CH3NH3PbBr3 and CsPbBr3. The findings reveal the general advantage of the soft [PbX3]-sublattice in charge carrier protection and suggest that there is likely no mechanistic limitations in using all-inorganic or mixed-cation lead halide perovskites to overcome instability problems and to tune the balance between charge carrier protection and mobility.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据