4.8 Article

Finely controlled multimetallic nanocluster catalysts for solvent-free aerobic oxidation of hydrocarbons

期刊

SCIENCE ADVANCES
卷 3, 期 7, 页码 -

出版社

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/sciadv.1700101

关键词

-

资金

  1. Japan Science and Technology Agency (JST) [JPMJER1503]
  2. JST Precursory Research for Embryonic Science and Technology [JPMJPR1511]
  3. Japan Society for the Promotion of Science KAKENHI [JP 16H04115, JP 15H05757]
  4. Network Joint Research Center forMaterials and Devices
  5. Grants-in-Aid for Scientific Research [16H04115, 17K14482] Funding Source: KAKEN

向作者/读者索取更多资源

The catalytic activity of alloy nanoparticles depends on the particle size and composition ratio of different metals. Alloy nanoparticles composed of Pd, Pt, and Au are widely used as catalysts for oxidation reactions. The catalytic activities of Pt and Au nanoparticles in oxidation reactions are known to increase as the particle size decreases and to increase on themetal-metal interface of alloy nanoparticles. Therefore, multimetallic nanoclusters (MNCs) around 1 nmin diameter have potential as catalysts for oxidation reactions. However, there have been few reports describing the preparation of uniform alloy nanoclusters. We report the synthesis of finely controlled MNCs (around 1 nm) using a macromolecular template with coordination sites arranged in a gradient of basicity. We reveal that Cu-Pt-Au MNCs supported on graphitized mesoporous carbon show catalytic activity that is 24 times greater than that of a commercially available Pt catalyst for aerobic oxidation of hydrocarbons. In addition, solvent-free aerobic oxidation of hydrocarbons to ketones at room temperature, using small amounts of a radical initiator, was achieved as a heterogeneous catalytic reaction for the first time.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据