4.8 Article

Transformation of shock-compressed graphite to hexagonal diamond in nanoseconds

期刊

SCIENCE ADVANCES
卷 3, 期 10, 页码 -

出版社

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/sciadv.aao3561

关键词

-

资金

  1. U.S. Department of Energy (DOE)/National Nuclear Security Administration (NNSA) [DE-NA0002007]
  2. Washington State University under the DOE/NNSA [DE-NA0002442]
  3. DOE Office of Science by Argonne National Laboratory [DE-AC02-06CH11357]

向作者/读者索取更多资源

The graphite-to-diamond transformation under shock compression has been of broad scientific interest since 1961. The formation of hexagonal diamond (HD) is of particular interest because it is expected to be harder than cubic diamond and due to its use in terrestrial sciences as a marker at meteorite impact sites. However, the formation of diamond having a fully hexagonal structure continues to be questioned and remains unresolved. Using real-time (nanosecond), in situ x-ray diffraction measurements, we show unequivocally that highly oriented pyrolytic graphite, shock-compressed along the c axis to 50 GPa, transforms to highly oriented elastically strained HD with the (100) HD plane parallel to the graphite basal plane. These findings contradict recent molecular dynamics simulation results for the shock-induced graphite-to-diamond transformation and provide a benchmark for future theoretical simulations. Additionally, our results show that an earlier report of HD forming only above 170 GPa for shocked pyrolytic graphite may lead to incorrect interpretations of meteorite impact events.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据