4.4 Article

Log-layer mismatch and modeling of the fluctuating wall stress in wall-modeled large-eddy simulations

期刊

PHYSICAL REVIEW FLUIDS
卷 2, 期 10, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevFluids.2.104601

关键词

-

资金

  1. US AFOSR [1194592-1-TAAHO]
  2. NASA [NNX15AU93A]

向作者/读者索取更多资源

Log-layer mismatch refers to a chronic problem found in wall-modeled large-eddy simulation (WMLES) or detached-eddy simulation, where the modeled wall-shear stress deviates from the true one by approximately 15%. Many efforts have been made to resolve this mismatch. The often-used fixes, which are generally ad hoc, include modifying subgridscale stress models, adding a stochastic forcing, and moving the LES-wall-model matching location away from the wall. An analysis motivated by the integral wall-model formalism suggests that log-layermismatch is resolved by the built-in physics-based temporal filtering. In this work we investigate in detail the effects of local filtering on log-layer mismatch. We show that both local temporal filtering and local wall-parallel filtering resolve log-layer mismatch without moving the LES-wall-model matching location away from the wall. Additionally, we look into the momentum balance in the near-wall region to provide an alternative explanation of how LLM occurs, which does not necessarily rely on the numerical-error argument. While filtering resolves log-layer mismatch, the quality of the wall-shear stress fluctuations predicted by WMLES does not improve with our remedy. The wall-shear stress fluctuations are highly underpredicted due to the implied use of LES filtering. However, good agreement can be found when the WMLES data are compared to the direct numerical simulation data filtered at the corresponding WMLES resolutions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据