4.4 Article

Chaotic and regular instantons in helical shell models of turbulence

期刊

PHYSICAL REVIEW FLUIDS
卷 2, 期 3, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevFluids.2.034606

关键词

-

资金

  1. European Research Council under the European Union [339032]
  2. CNPq [302351/2015-9]
  3. FAPERJ Pensa Rio Grant [E-26/210.874/2014]

向作者/读者索取更多资源

Shell models of turbulence have a finite-time blowup in the inviscid limit, i.e., the enstrophy diverges while the single-shell velocities stay finite. The signature of this blowup is represented by self-similar instantonic structures traveling coherently through the inertial range. These solutions might influence the energy transfer and the anomalous scaling properties empirically observed for the forced and viscous models. In this paper we present a study of the instantonic solutions for a set of four shell models of turbulence based on the exact decomposition of the Navier-Stokes equations in helical eigenstates. We find that depending on the helical structure of each model, instantons are chaotic or regular. Some instantonic solutions tend to recover mirror symmetry for scales small enough. Models that have anomalous scaling develop regular nonchaotic instantons. Conversely, models that have nonanomalous scaling in the stationary regime are those that have chaotic instantons. The direction of the energy carried by each single instanton tends to coincide with the direction of the energy cascade in the stationary regime. Finally, we find that whenever the small-scale stationary statistics is intermittent, the instanton is less steep than the dimensional Kolmogorov scaling, independently of whether or not it is chaotic. Our findings further support the idea that instantons might be crucial to describe some aspects of the multiscale anomalous statistics of shell models.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据