4.4 Article

Statistical state dynamics-based analysis of the physical mechanisms sustaining and regulating turbulence in Couette flow

期刊

PHYSICAL REVIEW FLUIDS
卷 2, 期 8, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevFluids.2.084608

关键词

-

资金

  1. Multiflow Program of the European Research Council
  2. NSF [AGS-1246929]
  3. Div Atmospheric & Geospace Sciences
  4. Directorate For Geosciences [1246929] Funding Source: National Science Foundation

向作者/读者索取更多资源

This paper describes a study of the self-sustaining process in wall turbulence. The study is based on a second order statistical state dynamics model of Couette flow in which the state variables are the streamwise mean flow (first cumulant) and perturbation covariance (second cumulant). This statistical state dynamics model is closed by either setting the third cumulant to zero or by replacing it with a stochastic parametrization. Statistical state dynamics models with this form are referred to as S3T models. S3T models have been shown to self-sustain turbulence with a mean flow and second order perturbation structure similar to that obtained by direct numerical simulation of the equations of motion. The use of a statistical state dynamics model to study the physical mechanisms underlying turbulence has important advantages over the traditional approach of studying the dynamics of individual realizations of turbulence. One advantage is that the analytical structure of S3T statistical state dynamics models isolates the interaction between the mean flow and the perturbation components of the turbulence. Isolation of the interaction between these components reveals how this interaction underlies both the maintenance of the turbulence variance by transfer of energy from the externally driven flow to the perturbation components as well as the enforcement of the observed statistical mean turbulent state by feedback regulation between the mean and perturbation fields. Another advantage of studying turbulence using statistical state dynamics models of S3T form is that the analytical structure of S3T turbulence can be completely characterized. For example, the perturbation component of turbulence in the S3T system is demonstrably maintained by a parametric perturbation growth mechanism in which fluctuation of the mean flow maintains the perturbation field which in turn maintains the mean flow fluctuations in a synergistic interaction. Furthermore, the equilibrium statistical state of S3T turbulence can be demonstrated to be enforced by feedback regulation in which transient growth of the perturbations episodically suppresses streak growth, preventing runaway parametric growth of the perturbation component. Using S3T to isolate the parametric growth and feedback regulation mechanisms allows a detailed characterization of the dynamics of the self-sustaining process in S3T turbulence with compelling implications for advancing understanding of wall turbulence.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据