4.6 Article

Enhanced photoelectrochemical effciency and stability using a conformal TiO2 film on a black silicon photoanode

期刊

NATURE ENERGY
卷 2, 期 6, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/nenergy.2017.45

关键词

-

资金

  1. US Department of Energy (DOE), Office in Science, Basic Energy Sciences (BES) [DE-SC0008711]
  2. National Major Research Program of China [2013CB932602]
  3. Program of Introducing Talents of Discipline to Universities [B14003]
  4. National Natural Science Foundation of China [51527802, 51232001, 51602020, 51672026]
  5. Beijing Municipal Science & Technology Commission
  6. U.S. Department of Energy (DOE) [DE-SC0008711] Funding Source: U.S. Department of Energy (DOE)

向作者/读者索取更多资源

Black silicon (b-Si) is a surface-nanostructured Si with extremely efficient light absorption capability and is therefore of interest for solar energy conversion. However, intense charge recombination and low electrochemical stability limit the use of b-Si in photoelectrochemical solar-fuel production. Here we report that a conformal, ultrathin, amorphous TiO2 film deposited by low-temperature atomic layer deposition (ALD) on top of b-Si can simultaneously address both of these issues. Combined with a Co(OH)(2) thin film as the oxygen evolution catalyst, this b-Si/TiO2/Co(OH)(2) heterostructured photoanode was able to produce a saturated photocurrent density of 32.3mAcm(2) at an external potential of 1.48V versus reversible reference electrode (RHE) in 1M NaOH electrolyte. The enhanced photocurrent relative to planar Si and unprotected b-Si photoelectrodes was attributed to the enhanced charge separation effciency as a result of the effiective passivation of defective sites on the b-Si surface. The 8-nm ALD TiO2 layer extends the operational lifetime of b-Si from less than half an hour to four hours.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据