4.6 Article

Synergistically Enhanced Electrocatalytic Performance of an N-Doped Graphene Quantum Dot-Decorated 3D MoS2-Graphene Nanohybrid for Oxygen Reduction Reaction

期刊

ACS OMEGA
卷 1, 期 5, 页码 971-980

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsomega.6b00275

关键词

-

资金

  1. Department of Science and Technology-Science and Engineering Research Board (DST-SERB), New Delhi, India [EMR/2014/000645]
  2. Ministry of New and Renewable Energy (MNRE), New Delhi, India [103/239/2015-NT]

向作者/读者索取更多资源

Nitrogen-doped graphene quantum dots (N-GQDs) were decorated on a three-dimensional (3D) MoS2-reduced graphene oxide (rGO) framework via a facile hydrothermal method. The distribution of N-GQDs on the 3D MoS2-rGO framework was confirmed using X-ray photoelectron spectroscopy, energy dispersive X-ray elemental mapping, and high-resolution transmission electron microscopy techniques. The resultant 3D nanohybrid was successfully demonstrated as an efficient electrocatalyst toward the oxygen reduction reaction (ORR) under alkaline conditions. The chemical interaction between the electroactive N-GQDs and MoS2-rGO and the increased surface area and pore size of the N-GQDs/MoS2-rGO nanohybrid synergistically improved the ORR onset potential to +0.81 V vs reversible hydrogen electrode (RHE). Moreover, the N-GQDs/MoS2-rGO nanohybrid showed better ORR stability for up to 3000 cycles with negligible deviation in the half-wave potential (E-1/2). Most importantly, the N-GQDs/MoS2-rGO nanohybrid exhibited a superior methanol tolerance ability even under a high concentration of methanol (3.0 M) in alkaline medium. Hence, the development of a low-cost metal-free graphene quantum dot-based 3D nanohybrid with high methanol tolerance may open up a novel strategy to design selective cathode electrocatalysts for direct methanol fuel cell applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据