4.5 Article

Peptidyl arginine deiminase-4-deficient mice are protected against kidney and liver injury after renal ischemia and reperfusion

期刊

AMERICAN JOURNAL OF PHYSIOLOGY-RENAL PHYSIOLOGY
卷 311, 期 2, 页码 F437-F449

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajprenal.00254.2016

关键词

acute kidney injury; inflammation; necrosis; NF-kappa B; peptidyl-citrullination

资金

  1. Department of Anesthesiology, Columbia University
  2. National Institutes of Health [R01-DK-058547, R01-GM-067081]

向作者/读者索取更多资源

We previously demonstrated that renal peptidyl arginine deiminase-4 (PAD4) is induced after renal ischemia and reperfusion (I/R) injury and exacerbates acute kidney injury (AKI) by increasing the renal tubular inflammatory response. Here, we tested whether genetic ablation of PAD4 attenuates renal injury and inflammation after I/R in mice. After renal I/R, PAD4 wild-type mice develop severe AKI with large increases in plasma creatinine, neutrophil infiltration, as well as significant renal tubular necrosis, apoptosis, and proinflammatory cytokine generation. In contrast, PAD4-deficient mice are protected against ischemic AKI with reduced real tubular neutrophil infiltration, renal tubular necrosis, and apoptosis. In addition, hepatic injury and inflammation observed in PAD4 wild-type mice after renal I/R are significantly attenuated in PAD4-deficient mice. We also show that increased renal tubular PAD4 expression after renal I/R is associated with translocation of PAD4 from the nucleus to the cytosol. Consistent with PAD4 cytosolic translocation, we show increased renal tubular cytosolic peptidyl-citrullination after ischemic AKI. Mechanistically, recombinant PAD4 treatment increased nuclear translocation of NF-kappa B in cultured human as well as murine proximal tubule cells that is inhibited by a PAD4 inhibitor (2-chloroamidine). Taken together, our studies further support the hypothesis that renal tubular PAD4 plays a critical role in renal I/R injury by increasing the renal tubular inflammatory response and neutrophil infiltration after renal I/R perhaps by interacting with the proinflammatory transcription factor NF-kappa B in the cytosol and promoting its nuclear translocation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据