4.3 Article

The effects of elevated temperature and ocean acidification on the metabolic pathways of notothenioid fish

期刊

CONSERVATION PHYSIOLOGY
卷 5, 期 -, 页码 -

出版社

OXFORD UNIV PRESS
DOI: 10.1093/conphys/cox019

关键词

Energetics; global climate change; metabolism; notothenioid; ocean acidification; thermal stress

资金

  1. National Science Foundation grant [PLR1040945, PLR1447291]
  2. SPARC Graduate Research Grant from Office of the Vice President for Research at the University of South Carolina

向作者/读者索取更多资源

The adaptations used by notothenioid fish to combat extreme cold may have left these fish poorly poised to deal with a changing environment. As such, the expected environmental perturbations brought on by global climate change have the potential to significantly affect the energetic demands and subsequent cellular processes necessary for survival. Despite recent lines of evidence demonstrating that notothenioid fish retain the ability to acclimate to elevated temperatures, the underlying mechanisms responsible for temperature acclimation in these fish remain largely unknown. Furthermore, little information exists on the capacity of Antarctic fish to respond to changes in multiple environmental variables. We have examined the effects of increased temperature and pCO(2) on the rate of oxygen consumption in three notothenioid species, Trematomus bernacchii, Pagothenia borchgrevinki, and Trematomus newnesi. We combined these measurements with analysis of changes in aerobic and anaerobic capacity, lipid reserves, fish condition, and growth rates to gain insight into the metabolic cost associated with acclimation to this dual stress. Our findings indicated that temperature is the major driver of the metabolic responses observed in these fish and that increased pCO(2) plays a small, contributing role to the energetic costs of the acclimation response. All three species displayed varying levels of energetic compensation in response to the combination of elevated temperature and pCO(2). While P. borchgrevinki showed nearly complete compensation of whole animal oxygen consumption rates and aerobic capacity, T. newnesi and T. bernacchii displayed only partial compensation in these metrics, suggesting that at least some notothenioids may require physiological trade-offs to fully offset the energetic costs of long-term acclimation to climate change related stressors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据