4.7 Article

Higgs vacuum metastability in primordial inflation, preheating, and reheating

期刊

PHYSICAL REVIEW D
卷 94, 期 10, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevD.94.103509

关键词

-

资金

  1. MEXT KAKENHI [15H05889, 16H00877]
  2. JSPS KAKENHI [26105520, 26247042]
  3. Center for the Promotion of Integrated Science (CPIS) of Sokendai [1HB5804100]
  4. Grants-in-Aid for Scientific Research [26247042, 16H00877] Funding Source: KAKEN

向作者/读者索取更多资源

Current measurements of the Higgs boson mass and top Yukawa coupling suggest that the effective Higgs potential develops an instability below the Planck scale. If the energy scale of inflation is as high as the grand unified theory (GUT) scale, inflationary quantum fluctuations of the Higgs field can easily destabilize the standard electroweak vacuum and produce a lot of anti-de Sitter (AdS) domains. This destabilization during inflation can be avoided if a relatively large nonminimal Higgs-gravity or inflaton-Higgs coupling is introduced. Such couplings generate a large effective mass term for the Higgs, which can raise the effective Higgs potential and suppress the vacuum fluctuation of the Higgs field. After primordial inflation, however, such effective masses drops rapidly and the nonminimal Higgs-gravity or inflaton-Higgs coupling can cause large fluctuations of the Higgs field to be generated via parametric resonance, thus producing AdS domains in the preheating stage. Furthermore, thermal fluctuations of the Higgs field cannot be neglected in the proceeding reheating epoch. We discuss the Higgs vacuum fluctuations during inflation, preheating, and reheating, and show that the Higgs metastability problem is severe unless the energy scale of the inflaton potential is much lower than the GUT scale.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据