4.6 Article

Two-dimensional interaction of spin chains in the Si(553)-Au nanowire system

期刊

PHYSICAL REVIEW B
卷 94, 期 16, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.94.161403

关键词

-

资金

  1. DFG [FOR1700]
  2. Office of Naval Research through the Naval Research Laboratory's Basic Research Program

向作者/读者索取更多资源

Adsorption of Au on Si(553) results in the self-assembly of highly ordered step arrays of one-dimensional (1D) Au atomic wires along the step direction. Charge transfer from the terrace to the step edge causes every third Si atom at the step edge to exhibit a partially filled dangling bond hosting a single fully spin-polarized electron which forms in an ordered 1D spin chain along the step. The interstep correlation of this threefold periodicity in neighboring Si step edges and the geometry of the unit cell has been determined by means of high-resolution spot profile analysis low-energy electron diffraction, scanning tunneling microscopy, and density functional theory. While the twofold periodicity of the Au wires exhibits a weak interwire interaction, leading to streaks in the diffraction pattern, the correlation of the Si step edge atoms is by far a stronger interaction, resulting in clear spots. The corresponding unit cell spanned by threefold ordered step edge atoms can be described as a centered structure which is magnetically frustrated and may stabilize a (two-dimensional) quantum spin liquid.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据