4.7 Article

Meteorological influence on summertime baroclinic exchange in the Straits of Mackinac

期刊

JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS
卷 122, 期 3, 页码 2171-2182

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1002/2016JC012255

关键词

-

向作者/读者索取更多资源

Straits flows can impose a complex hydrodynamic environment with high seasonal variability and significant impacts to nearby water bodies. In the Straits of Mackinac, exchange flow between Lake Michigan and Lake Huron influences water quality and ecological processes, as well as the transport of any contaminants released in or near the straits. Although previous work has shown that a Helmholtz mode is responsible for the barotropic flow oscillations in the straits, baroclinic effects impose opposite surface and subsurface flows during the summer months. In this study, we use observations of currents and water temperatures from instruments deployed in the straits to validate a hydrodynamic model of the combined Lake Michigan-Huron system and then use the model results to investigate the baroclinic flow and determine the forcing mechanisms that drive exchange flow in the Straits of Mackinac. Analysis shows that although the Helmholtz mode drives a 3 day oscillation throughout the year, thermal stratification in the summer establishes a bidirectional flow that is governed by a shift from regional-scale to local-scale meteorological conditions. These results detail the seasonal variability in the straits, including the barotropic and baroclinic contributions to exchange flow and the influence of local atmospheric forcing on transport through the Straits of Mackinac.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据