4.6 Article

Multi-Component Microscaffold With 3D Spatially Defined Proteinaceous Environment

期刊

ACS BIOMATERIALS SCIENCE & ENGINEERING
卷 3, 期 3, 页码 487-494

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsbiomaterials.6b00695

关键词

cell culture; direct laser writing; cross-linking

资金

  1. Ministry of Education, Culture, Sports, Science, and Technology of Japan

向作者/读者索取更多资源

In this paper, we present a multicomponent microenvironment consisting of proteinaceous networks with submicron-sized features optionally embedded into a photoresist microscaffold. By two-photon direct laser writing, free-standing 3D proteinaceous microstructures were fabricated for cell culture application, demonstrated with NIH/3T3 fibroblast cells. A Young's modulus of megapascal-order contributes to the challenge of structural sustainability of the proteinaceous microstructures for experiments as well as sequential fabrication steps. We propose to embed proteinaceous networks into a mechanically robust photoresist microscaffold. We investigate the limits of this 3D microfabrication of embedded proteinaceous networks and demonstrate the embedment of two different proteinaceous networks within one microscaffold. Performing cell culture of PC12 cells, we observe cell adhesion and cell motility on embedded proteinaceous networks of collagen type-IV mixed with bovine serum albumin into a photoresist microscaffold. The ability to structure proteinaceous elements for 3D spatial control of microenvironment might be a key feature in cell culture to decouple environmental cues to control cellular behavior.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据