4.7 Article

Detailed spatiotemporal evolution of microseismicity and repeating earthquakes following the 2012 M-w 7.6 Nicoya earthquake

期刊

JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH
卷 122, 期 1, 页码 524-542

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1002/2016JB013632

关键词

Nicoya Peninsula; matched filter technique; repeating earthquakes; afterslip

资金

  1. National Science Foundation [NSF-1262267, NSF-1321552, NSF-1447104, ACI-1053575]
  2. Division Of Earth Sciences [1447104] Funding Source: National Science Foundation

向作者/读者索取更多资源

We apply a waveform matching technique to obtain a detailed earthquake catalog around the rupture zone of the 5 September 2012 moment magnitude 7.6 Nicoya earthquake, with emphasis on its aftershock sequence. Starting from a preliminary catalog, we relocate similar to 7900 events using TomoDD to better quantify their spatiotemporal behavior. Relocated aftershocks are mostly clustered in two groups. The first is immediately above the major coseismic slip patch, partially overlapping with shallow afterslip. The second one is 50km SE to the main shock nucleation point and near the terminus of coseismic rupture, in a zone that exhibited little resolvable afterslip. Using the relocated events as templates, we scan through the continuous recording from 29 June 2012 to 30 December 2012, detecting approximately 17 times more than template events. We find 190 aftershocks in the first half hour following the main shock, mostly along the plate interface. Later events become more scattered in location, showing moderate expansion in both along-trench and downdip directions. From the detected catalog we identify 53 repeating aftershock clusters with mean cross-correlation values larger than 0.9, and indistinguishably intracluster event locations, suggesting slip on the same fault patch. Most repeating clusters occurred within the first major aftershock group. Very few repeating clusters were found in the aftershock grouping along the southern edge of the Peninsula, which is not associated with substantial afterslip. Our observations suggest that loading from nearby afterslip along the plate interface drives spatiotemporal evolution of aftershocks just above the main shock rupture patch, while aftershocks in the SE group are to the SE of the observed updip afterslip and poorly constrained.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据