4.5 Article

Carbon Inputs From Riparian Vegetation Limit Oxidation of Physically Bound Organic Carbon Via Biochemical and Thermodynamic Processes

期刊

JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES
卷 122, 期 12, 页码 3188-3205

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1002/2017JG003967

关键词

-

资金

  1. U.S. Department of Energy (DOE), Office of Biological and Environmental Research (BER), as part of Subsurface Biogeochemical Research Program's Scientific Focus Area (SFA) at Pacific Northwest National Laboratory (PNNL)
  2. DOE [DE-AC06-76RLO 1830]

向作者/读者索取更多资源

In light of increasing terrestrial carbon (C) transport across aquatic boundaries, the mechanisms governing organic carbon (OC) oxidation along terrestrial-aquatic interfaces are crucial to future climate predictions. Here we investigate the biochemistry, metabolic pathways, and thermodynamics corresponding to OC oxidation in the Columbia River corridor using ultrahigh-resolution C characterization. We leverage natural vegetative differences to encompass variation in terrestrial C inputs. Our results suggest that decreases in terrestrial C deposition associated with diminished riparian vegetation induce oxidation of physically bound OC. We also find that contrasting metabolic pathways oxidize OC in the presence and absence of vegetation and-in direct conflict with the priming concept-that inputs of water-soluble and thermodynamically favorable terrestrial OC protect bound-OC from oxidation. In both environments, the most thermodynamically favorable compounds appear to be preferentially oxidized regardless of which OC pool microbiomes metabolize. In turn, we suggest that the extent of riparian vegetation causes sediment microbiomes to locally adapt to oxidize a particular pool of OC but that common thermodynamic principles govern the oxidation of each pool (i.e., water-soluble or physically bound). Finally, we propose a mechanistic conceptualization of OC oxidation along terrestrial-aquatic interfaces that can be used to model heterogeneous patterns of OC loss under changing land cover distributions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据