4.7 Article

On the radiogenic heat production of metamorphic, igneous, and sedimentary rocks

期刊

GEOSCIENCE FRONTIERS
卷 9, 期 6, 页码 1777-1794

出版社

CHINA UNIV GEOSCIENCES, BEIJING
DOI: 10.1016/j.gsf.2017.10.012

关键词

Heat generation; Density; Metamorphic rocks; Sedimentary rocks; Igneous rocks; Continental lithosphere

资金

  1. Australian Government Research Training Program Scholarship

向作者/读者索取更多资源

Sedimentary rocks cover similar to 73% of the Earth's surface and metamorphic rocks account for approximately 91% of the crust by volume. Understanding the average behavior and variability of heat production for these rock types are vitally important for developing accurate models of lithospheric temperature. We analyze the heat production of similar to 204,000 whole rock geochemical data to quantify how heat production of these rocks varies with respect to chemistry and their evolution during metamorphism. The heat production of metaigneous and metasedimentary rocks are similar to their respective protoliths. Igneous and metaigneous samples increase in heat production with increasing SiO2 and K2O, but decrease with increasing FeO, MgO and CaO. Sedimentary and metasedimentary rocks increase in heat production with increasing Al2O3, FeO, TiO2, and K2O but decrease with increasing CaO. For both igneous and sedimentary rocks, the heat production variations are largely correlated with processes that affect K2O concentration and covary with other major oxides as a consequence. Among sedimentary rocks, aluminous shales are the highest heat producing (2.9 mu W m(-3)) whereas more common iron shales are lower heat producing (1.7 mu W m(-3)). Pure quartzites and carbonates are the lowest heat producing sedimentary rocks. Globally, there is little definitive evidence for a decrease in heat production with increasing metamorphic grade. However, there remains the need for high resolution studies of heat production variations within individual protoliths that vary in metamorphic grade. These results improve estimates of heat production and natural variability of rocks that will allow for more accurate temperature models of the lithosphere. (C) 2017, China University of Geosciences (Beijing) and Peking University. Production and hosting by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据