4.7 Article

Thermal buckling and postbuckling of functionally graded graphene nanocomposite plates

期刊

MATERIALS & DESIGN
卷 132, 期 -, 页码 430-441

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.matdes.2017.07.025

关键词

Thermal buckling; Postbuckling; Graphene nanocomposite; Functionally graded plate; Differential quadrature method

资金

  1. Australian Research Council [DP160101978]

向作者/读者索取更多资源

This paper deals with the thermal buckling and postbuckling of functionally graded multilayer nanocomposite plates reinforcedwith a lowcontent of graphene platelets (GPLs). It is assumed that GPL reinforcements are randomly oriented and uniformly dispersed in each individual GPL-reinforced composite (GPLRC) layer but the concentration follows a layer-wise variation across the plate thickness. The modified Halpin-Tsai micromechanics model that takes into account the GPL geometry effect is adopted to estimate the effective Young's modulus of GPLRC layers. Within the framework of the first-order shear deformation theory, the nonlinear governing equations are derived by applying the principle of virtual displacements and then solved by using a differential quadrature-based iteration technique. Parametric studies are conducted to examine the influences of GPL distribution pattern, concentration and geometry, as well as in-plane force on the thermal buckling and postbuckling behaviours. Our results show that distributing more GPLs near the surface layers is capable of reinforcing the thermal buckling and postbuckling performances of GPLRC plates. Whether the thermal buckling and postbuckling resistance increases or decreases with the increases in GPL weight fraction, aspect ratio and width-to-thickness ratio is highly dependent on the GPL distribution pattern. (C) 2017 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据