4.7 Article

Analytical modeling of grinding-induced subsurface damage in monocrystalline silicon

期刊

MATERIALS & DESIGN
卷 130, 期 -, 页码 250-262

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.matdes.2017.05.068

关键词

Monocrystalline silicon; Grinding; Subsurface damage

资金

  1. National Natural Science Foundation of China [51275084]

向作者/读者索取更多资源

Monocrystalline silicon is a predominant type of semiconductors. However, subsurface damage (SSD) of silicon has been widely reported during the mechanical grinding process. Although relevant efforts have been reported, most theoretical studies only qualitatively explained the SSD formation mechanism rather than quantitatively evaluate SSD values, while most experimental measurement techniques unavoidably damaged (even destroyed) the ground surfaces and therefore could only be ultilised ex-situ. To fill this gap, this paper suggests an analytical model of grinding-induced SSD in silicon, where the explicit relationship between SSD and the ground surface roughness Rz is analytically established considering the (i) ductile-regime effect, (ii) crystallographic orientation effect, and (iii) material property degradation due to high grinding temperature. Based on the model, grindinginduced SSD could be nondestructively, quickly and conveniently evaluated, in-situ or ex-situ, by measuring Rz values based on a handheld profilometer. Grinding trials indicated the model could accurately evaluate SSD depths along both the <100> and <110> crystallographic orientations in both dry and wet silicon grinding processes. Further discussion on how the model could guide and monitor the industrial silicon grinding is also presented. The proposed model therefore is anticipated to be meaningful to facilitate design, manufacture, and applications of monocrystalline silicon. [GRAPHICS] .

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据