4.7 Article

Laser diode area melting for high speed additive manufacturing of metallic components

期刊

MATERIALS & DESIGN
卷 117, 期 -, 页码 305-315

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.matdes.2016.12.095

关键词

Selective laser melting; Additive manufacturing; Direct metal laser sintering; Laser diode; Advanced manufacturing; High speed

资金

  1. UK Engineering & Physical Sciences Research Council IIKE Proof of Concept award [EP/K503812/1]
  2. Science and Technology National Council (CONACYT) of Mexico
  3. Engineering and Physical Sciences Research Council [EP/K503812/1] Funding Source: researchfish
  4. EPSRC [EP/M009106/1, EP/K503812/1] Funding Source: UKRI

向作者/读者索取更多资源

Additive manufacturing processes have been developed to a stage where they can now be routinely used to manufacture net-shape high-value components. Selective Laser Melting (SLM) comprises of either a single or multiple deflected high energy fibre laser source(s) to raster scan, melt and fuse layers of metallic powdered feedstock. However this deflected laser raster scanning methodology is high cost, energy inefficient and encounters significant limitations on output productivity due to the rate of feedstock melting. This work details the development of a new additive manufacturing process known as Diode Area Melting (DAM). This process utilises customised architectural arrays of low power laser diode emitters for high speed parallel processing of metallic feedstock. Individually addressable diode emitters are used to selectively melt feedstock from a pre-laid powder bed. The laser diodes operate at shorter laser wavelengths (808 nm) than conventional SLM fibre lasers (1064 nm) theoretically enabling more efficient energy absorption for specific materials. The melting capabilities of the DAM process were tested for low melting point eutectic BiZn2.7 elemental powders and higher temperature pre-alloyed 17-4 stainless steel powder. The process was shown to be capable of fabricating controllable geometric features with evidence of complete melting and fusion between multiple powder layers. (C) 2017 The Authors. Published by Elsevier Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据