4.7 Article

Universal mechanism for the binding of temporal cavity solitons

期刊

OPTICA
卷 4, 期 8, 页码 855-863

出版社

OPTICAL SOC AMER
DOI: 10.1364/OPTICA.4.000855

关键词

-

类别

资金

  1. Royal Society of New Zealand
  2. H2020 European Research Council (ERC) [306633]

向作者/读者索取更多资源

Temporal cavity solitons (CSs) are pulses of light that can persist in coherently driven passive resonators, such as fiber ring resonators and monolithic Kerr microresonators. While these solitons can in principle occupy arbitrary positions, multisoliton configurations often appear rigidly frozen in time, seemingly insensitive to noise. Here, we elucidate this behavior by presenting theoretical and experimental evidence of a universal mechanism through which temporal CSs can form robust long-range bound states. These bound states require perturbations to the strict Lugiato-Lefever mean-field description of temporal CSs. Binding occurs when the perturbation excites a narrowband resonance in the soliton spectrum, which gives long oscillatory tails to the CSs. Those tails can then interlock for a discrete set of temporal separations between the solitons. The universality of this mechanism is demonstrated in fiber ring cavities by providing experimental observations of long-range bound states ensuing from three different perturbations: third-order dispersion (dispersive wave generation), the periodic nature of the cavity (Kelly sidebands), and the random birefringence of the resonator. Subpicosecond resolution of bound-state separations and their dynamics are obtained by using the dispersive Fourier transform technique. Good agreement with theoretical models, including a new vector mean-field model, is also reported. Our work provides a framework to better understand the many soliton bound states observed in externally driven, passive Kerr resonators, including the soliton crystals reported in micro-resonators. (C) 2017 Optical Society of America

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据