4.5 Article

Sequence-based analysis of the genus Ruminococcus resolves its phylogeny and reveals strong host association

期刊

MICROBIAL GENOMICS
卷 2, 期 12, 页码 -

出版社

MICROBIOLOGY SOC
DOI: 10.1099/mgen.0.000099

关键词

Ruminococcus; host range; phylogeny; phylogenomics; 16S rRNA; host diet

资金

  1. US Department of Energy Biological and Environmental Research Early Career Research Program Award [DE-SC0008104]
  2. U.S. Department of Energy (DOE) [DE-SC0008104] Funding Source: U.S. Department of Energy (DOE)

向作者/读者索取更多资源

It has become increasingly clear that the composition of mammalian gut microbial communities is substantially diet driven. These microbiota form intricate mutualisms with their hosts, which have profound implications on overall health. For example, many gut microbes are involved in the conversion of host-ingested dietary polysaccharides into host-usable nutrients. One group of important gut microbial symbionts are bacteria in the genus Ruminococcus. Originally isolated from the bovine rumen, ruminococci have been found in numerous mammalian hosts, including other ruminants, and non-ruminants such as horses, pigs and humans. All ruminococci require fermentable carbohydrates for growth, and their substrate preferences appear to be based on the diet of their particular host. Most ruminococci that have been studied are those capable of degrading cellulose, much less is known about non-cellulolytic non-ruminant-associated species, and even less is known about the environmental distribution of ruminococci as a whole. Here, we capitalized on the wealth of publicly available 16Sr RNA gene sequences, genomes and large-scale microbiota studies to both resolve the phylogenetic placement of described species in the genus Ruminococcus, and further demonstrate that this genus has largely unexplored diversity and a staggering host distribution. We present evidence that ruminococci are predominantly associated with herbivores and omnivores, and our data supports the hypothesis that very few ruminococci are found consistently in non-host-associated environments. This study not only helps to resolve the phylogeny of this important genus, but also provides a framework for understanding its distribution in natural systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据