4.7 Review

Human beta cell mass and function in diabetes: Recent advances in knowledge and technologies to understand disease pathogenesis

期刊

MOLECULAR METABOLISM
卷 6, 期 9, 页码 943-957

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.molmet.2017.06.019

关键词

Diabetes; Human; Islet of Langerhans; Beta cell mass; Beta cell function; Pathogenesis; In vitro; In situ; In vivo

资金

  1. Paul Langerhans Institute Dresden (PLID) of Helmholtz Zentrum Munchen at the University Clinic Carl Gustav Carus of Technische Universitat Dresden
  2. German Ministry for Education and Research (BMBF)
  3. DFG-Research Center for Regenerative Therapies Dresden, Cluster of Excellence (CRTD)
  4. DFG [SFB/Transregio 127]
  5. European Foundation for the Study of Diabetes (EFSD)/Boehringer Ingelheim Basic Research Programme
  6. Helmsley Charitable Trust

向作者/读者索取更多资源

Background: Plasma insulin levels are predominantly the product of the morphological mass of insulin producing beta cells in the pancreatic islets of Langerhans and the functional status of each of these beta cells. Thus, deficiency in either beta cell mass or function, or both, can lead to insufficient levels of insulin, resulting in hyperglycemia and diabetes. Nonetheless, the precise contribution of beta cell mass and function to the pathogenesis of diabetes as well as the underlying mechanisms are still unclear. In the past, this was largely due to the restricted number of technologies suitable for studying the scarcely accessible human beta cells. However, in recent years, a number of new platforms have been established to expand the available techniques and to facilitate deeper insight into the role of human beta cell mass and function as cause for diabetes and as potential treatment targets. Scope of Review: This review discusses the current knowledge about contribution of human beta cell mass and function to different stages of type 1 and type 2 diabetes pathogenesis. Furthermore, it highlights standard and newly developed technological platforms for the study of human beta cell biology, which can be used to increase our understanding of beta cell mass and function in human glucose homeostasis. Major Conclusions: In contrast to early disease models, recent studies suggest that in type 1 and type 2 diabetes impairment of beta cell function is an early feature of disease pathogenesis while a substantial decrease in beta cell mass occurs more closely to clinical manifestation. This suggests that, in addition to beta cell mass replacement for late stage therapies, the development of novel strategies for protection and recovery of beta cell function could be most promising for successful diabetes treatment and prevention. The use of today's developing and wide range of technologies and platforms for the study of human beta cells will allow for a more detailed investigation of the underlying mechanisms and will facilitate development of treatment approaches to specifically target human beta cell mass and function. (C) 2017 Published by Elsevier GmbH.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据