4.6 Article

Antibiofilm activity of biogenic copper and zinc oxide nanoparticles-antimicrobials collegiate against multiple drug resistant bacteria: a nanoscale approach

期刊

JOURNAL OF NANOSTRUCTURE IN CHEMISTRY
卷 6, 期 4, 页码 329-341

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s40097-016-0205-2

关键词

Biogenic nanoparticles; Test tube method; Microtiter plate method; Scanning electron microscopy; Antibiofilm activity

向作者/读者索取更多资源

The synthesis of biogenic nanoparticles from non-chemical resources has increased the drive toward understanding infection biology. Accordingly, we aimed to address the symbiotic antibiofilm effect of biogenic copper and zinc oxide nanoparticles with antimicrobials against multidrug resistant (MDR) pathogens. The minimum inhibitory concentration (MIC) of copper nanoparticles (CuNPs) and zinc oxide nanoparticles (ZnONPs) at the range from 2 to 128 A mu g/ml was calculated against Gram-positive and Gram-negative pathogenic bacteria using a broth dilution method. Both nanoparticles have prime antibacterial activity compared with standard antibiotics (excluding against P.aeruginosa MTCC 741). A qualitative assessment of biofilm formation and collegial effect was performed using a modified test tube and the microtiter plate-based method by measuring the optical density and time kill of nanoparticles. The results demonstrated efficient antibiofilm activity of CuNPs in its lowest concentration than ZnONPs and antibiotics itself. In addition, significant enhancing antibiofilm effect was also shown by CuNPs in the presence of third generation antibiotics against Gram-negative and Gram-positive bacteria. A scanning electron microscopy (SEM) analysis was used to investigate the effect of the nanoparticles on morphological changes of Staphylococcus aureus. Current data highlights, biogenic CuNPs and ZnONPs could be used as an adjuvant for antibiotics in the treatment of bacterial infections.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据