4.6 Article

Bootstrap Based Uncertainty Propagation for Data Quality Estimation in Crowdsensing Systems

期刊

IEEE ACCESS
卷 5, 期 -, 页码 1146-1155

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/ACCESS.2017.2651942

关键词

Distributed in formation systems; measurement uncertainty; statistical analysis; sensor systems and applications

资金

  1. European Union's Horizon Research and Innovation Programme [687959]

向作者/读者索取更多资源

The diffusion of mobile devices equipped with sensing, computation, and communication capabilities is opening unprecedented possibilities for high-resolution, spatio-temporal mapping of several phenomena. This novel data generation, collection, and processing paradigm, termed crowdsensing, lays upon complex, distributed cyberphysical systems. Collective data gathering from heterogeneous, spatially distributed devices inherently raises the question of how to manage different quality levels of contributed data. In order to extract meaningful information, it is, therefore, desirable to the introduction of effective methods for evaluating the quality of data. In this paper, we propose an approach aimed at systematic accuracy estimation of quantities provided by end-user devices of a crowd-based sensing system. This is obtained thanks to the combination of statistical bootstrap with uncertainty propagation techniques, leading to a consistent and technically sound methodology. Uncertainty propagation provides a formal framework for combining uncertainties, resulting from different quantities influencing a given measurement activity. Statistical bootstrap enables the characterization of the sampling distribution of a given statistics without any prior assumption on the type of statistical distributions behind the data generation process. The proposed approach is evaluated on synthetic benchmarks and on a real world case study. Cross-validation experiments show that confidence intervals computed by means of the presented technique show a maximum 1.5% variation with respect to interval widths computed by means of controlled standard Monte Carlo methods, under a wide range of operating conditions. In general, experimental results confirm the suitability and validity of the introduced methodology.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据