4.8 Article

Candida albicans Yeast, Pseudohyphal, and hyphal Morphogenesis Differentially affects immune recognition

期刊

FRONTIERS IN IMMUNOLOGY
卷 8, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fimmu.2017.00629

关键词

Candida albicans; cell wall; cytokine; immune recognition; morphogenesis

资金

  1. Wellcome Trust [086827, 075470, 097377, 101873, 200208]
  2. European Union ALLFUN (FP7) [HEALTH-2010-260338]
  3. MRC Centre for Medical Mycology [N006364/1]
  4. SORSAS (Scottish Overseas Research Students Award Scheme) from the University of Aberdeen
  5. Rwandan Government
  6. MRC [MR/N006364/1] Funding Source: UKRI
  7. Medical Research Council [MR/N006364/1] Funding Source: researchfish

向作者/读者索取更多资源

Candida albicans is a human opportunist pathogen that can grow as yeast, pseudo-hyphae, or true hyphae in vitro and in vivo, depending on environmental conditions. Reversible cellular morphogenesis is an important virulence factor that facilitates invasion of host tissues, escape from phagocytes, and dissemination in the blood stream. The innate immune system is the first line of defense against C. albicans infections and is influenced by recognition of wall components that vary in composition in different morphological forms. However, the relationship between cellular morphogenesis and immune recognition of this fungus is not fully understood. We therefore studied various vegetative cell types of C. albicans, singly and in combination, to assess the consequences of cellular morphogenesis on selected immune cytokine outputs from human monocytes. Hyphae stimulated proportionally lower levels of certain cytokines from monocytes per unit of cell surface area than yeast cells, but did not suppress cytokine response when copresented with yeast cells. Pseudohyphal cells induced intermediate cytokine responses. Yeast monomorphic mutants had elevated cytokine responses under conditions that otherwise supported filamentous growth and mutants of yeast and hyphal cells that were defective in cell wall mannosylation or lacking certain hypha-specific cell wall proteins could variably unmask or deplete the surface of immunostimulatory ligands. These observations underline the critical importance of C. albicans morphology and morphology-associated changes in the cell wall composition that affect both immune recognition and pathogenesis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据