4.5 Article

Characterizing solar-type stars from full-length Kepler data sets using the Asteroseismic Modeling Portal

期刊

ASTRONOMY & ASTROPHYSICS
卷 601, 期 -, 页码 -

出版社

EDP SCIENCES S A
DOI: 10.1051/0004-6361/201629496

关键词

stars: fundamental parameters; stars: oscillations; stars: interiors; asteroseismology; methods: numerical

资金

  1. NASA Science Mission directorate
  2. Laboratoire Lagrange BQR
  3. NASA [NNX13AE91G, NNX16AB97G]
  4. CNES GOLF grants
  5. Observatoire de la Cote d'Azur
  6. NASA [475047, NNX16AB97G, 907754, NNX13AE91G] Funding Source: Federal RePORTER

向作者/读者索取更多资源

The Kepler space telescope yielded unprecedented data for the study of solar-like oscillations in other stars. The large samples of multi-year observations posed an enormous data analysis challenge that has only recently been surmounted. Asteroseismic modeling has become more sophisticated over time, with better methods gradually developing alongside the extended observations and improved data analysis techniques. We apply the latest version of the Asteroseismic Modeling Portal (AMP) to the full-length Kepler data sets for 57 stars, comprising planetary hosts, binaries, solar-analogs, active stars, and for validation purposes, the Sun. From an analysis of the derived stellar properties for the full sample, we identify a variation of the mixing-length parameter with atmospheric properties. We also derive a linear relation between the stellar age and a characteristic frequency separation ratio. In addition, we find that the empirical correction for surface effects suggested by Kjeldsen and coworkers is adequate for solar-type stars that are not much hotter (T-eff less than or similar to 6200 K) or significantly more evolved (log g greater than or similar to 4.2, (Delta v) greater than or similar to 80 mu Hz) than the Sun. Precise parallaxes from the Gaia mission and future observations from TESS and PLATO promise to improve the reliability of stellar properties derived from asteroseismology.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据