4.5 Article

Giant planet formation at the pressure maxima of protoplanetary disks

期刊

ASTRONOMY & ASTROPHYSICS
卷 604, 期 -, 页码 -

出版社

EDP SCIENCES S A
DOI: 10.1051/0004-6361/201629843

关键词

planets and satellites: formation; planets and satellites: gaseous planets; protoplanetary disks

资金

  1. National Scientific and Technical Research Council
  2. National University of La Plata, Argentina
  3. Janos Bolyai Research Scholarship of the Hungarian Academy of Sciences

向作者/读者索取更多资源

Context. In the classical core-accretion planet-formation scenario, rapid inward migration and accretion timescales of kilometer size planetesimals may not favor the formation of massive cores of giant planets before the dissipation of protoplanetary disks. On the other hand, the existence of pressure maxima in the disk could act as migration traps and locations for solid material accumulation, favoring the formation of massive cores. Aims. We aim to study the radial drift of pebbles and planetesimals and planet migration at pressure maxima in a protoplanetary disk and their implications for the formation of massive cores as triggering a gaseous runaway accretion phase. Methods. The time evolution of a viscosity driven accretion disk is solved numerically introducing a a dead zone as a low-viscosity region in the protoplanetary disk. A population of pebbles and planetesimals evolving by radial drift and accretion by the planets is also considered. Finally, the embryos embedded in the disk grow by the simultaneous accretion of pebbles, planetesimals, and the surrounding gas. Results. Our simulations show that the pressure maxima generated at the edges of the low-viscosity region of the disk act as planet migration traps, and that the pebble and planetesimal surface densities are significantly increased due to the radial drift towards pressure maxima locations. However, our simulations also show that migration-trap locations and solid-material-accumulation locations are not exactly at the same positions. Thus, a planet's semi-major axis oscillations around zero torque locations predicted by MHD and HD simulations are needed for the planet to accrete all the available material accumulated at the pressure maxima. Conclusions. Pressure maxima generated at the edges of a low-viscosity region of a protoplanetary disk seem to be preferential locations for the formation and trap of massive cores.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据