4.5 Article

The Gaia-ESO Survey: double-, triple-, and quadruple-line spectroscopic binary candidates

期刊

ASTRONOMY & ASTROPHYSICS
卷 608, 期 -, 页码 -

出版社

EDP SCIENCES S A
DOI: 10.1051/0004-6361/201730442

关键词

binaries: spectroscopic; techniques: radial velocities; methods: data analysis; open clusters and associations: general; globular clusters: general

资金

  1. Fondation ULB
  2. Action de recherche concertee (ARC) from the Direction generale de l'Enseignement non obligatoire et de la Recherche scientifique - Direction de la recherche scientifique - Communaute francaise de Belgique
  3. FNRS [2.4513.11]
  4. Fonds de la Recherche Scientifique FNRS [T.0198.13]
  5. Spanish grant within the European Founds for Regional Development (FEDER) [AYA2015-63588-P]
  6. Spanish Ministerio de Economia y Competitividad [AYA2013-40611-P]
  7. Polish Ministry of Science and Higher Education
  8. European Union through ERC [320360]
  9. Leverhulme Trust [RPG-2012-541]
  10. INAF
  11. Ministero dell'Istruzione, dell'Universita e della Ricerca (MIUR)
  12. ESF (European Science Foundation) through the GREAT Research Network Programme
  13. US Government [NAGW-2166]
  14. STFC [ST/N004493/1] Funding Source: UKRI

向作者/读者索取更多资源

Context. The Gaia-ESO Survey (GES) is a large spectroscopic survey that provides a unique opportunity to study the distribution of spectroscopic multiple systems among different populations of the Galaxy. Aims. Our aim is to detect binarity/multiplicity for stars targeted by the GES from the analysis of the cross-correlation functions (CCFs) of the GES spectra with spectral templates. Methods. We developed a method based on the computation of the CCF successive derivatives to detect multiple peaks and determine their radial velocities, even when the peaks are strongly blended. The parameters of the detection of extrema (DOE) code have been optimized for each GES GIRAFFE and UVES setup to maximize detection. The DOE code therefore allows to automatically detect multiple line spectroscopic binaries (SBn, n >= 2). Results. We apply this method on the fourth GES internal data release and detect 354 SBn candidates (342 SB2, 11 SB3, and even one SB4), including only nine SBs known in the literature. This implies that about 98% of these SBn candidates are new because of their faint visual magnitude that can reach V = 19. Visual inspection of the SBn candidate spectra reveals that the most probable candidates have indeed a composite spectrum. Among the SB2 candidates, an orbital solution could be computed for two previously unknown binaries: CNAME 06404608+0949173 (known as V642 Mon) in NGC 2264 and CNAME 19013257-0027338 in Berkeley 81 (Be 81). A detailed analysis of the unique SB4 (four peaks in the CCF) reveals that CNAME 08414659-5303449 (HD 74438) in the open cluster IC 2391 is a physically bound stellar quadruple system. The SB candidates belonging to stellar clusters are reviewed in detail to discard false detections. We suggest that atmospheric parameters should not be used for these system components; SB-specific pipelines should be used instead. Conclusions. Our implementation of an automatic detection of spectroscopic binaries within the GES has allowed the efficient discovery of many new multiple systems. With the detection of the SB1 candidates that will be the subject of a forthcoming paper, the study of the statistical and physical properties of the spectroscopic multiple systems will soon be possible for the entire GES sample.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据