4.5 Article

On the kinematic detection of accreted streams in the Gaia era: a cautionary tale

期刊

ASTRONOMY & ASTROPHYSICS
卷 604, 期 -, 页码 -

出版社

EDP SCIENCES S A
DOI: 10.1051/0004-6361/201629691

关键词

Galaxy: disk; Galaxy: halo; Galaxy: formation; Galaxy: evolution; Galaxy: kinematics and dynamics methods: numerical

资金

  1. Ile-de-France Region
  2. DIM-ACAV, through the grant Reconstructing the accretion history of the Milky Way through its globular clusters system
  3. ANR (Agence Nationale de la Recherche) [ANR-15-CE31-0007]
  4. CNRS
  5. CNR short-term mobility (STM) programme
  6. STFC [ST/P00556X/1] Funding Source: UKRI
  7. Science and Technology Facilities Council [ST/P00556X/1] Funding Source: researchfish

向作者/读者索取更多资源

The.CDM cosmological scenario predicts that our Galaxy should contain hundreds of stellar streams in the solar vicinity, fossil relics of the merging history of the Milky Way and more generally of the hierarchical growth of galaxies. Because of the mixing time scales in the inner Galaxy, it has been claimed that these streams should be difficult to detect in configuration space but can still be identifiable in kinematic-related spaces like the energy/angular momenta spaces, E - L-z and L-perpendicular to - L-z, or spaces of orbital/velocity parameters. By means of high-resolution, dissipationless N-body simulations containing between 25 x 10(6) and 35 x 10(6) particles, we model the accretion of a series of up to four 1: 10 mass ratio satellites then up to eight 1: 100 satellites and search systematically for the signature of accretions in these spaces. The novelty of this work with respect to the majority of those already published is our analysis of fully consistent models, where both the satellite(s) and the Milky Way galaxy are live systems, which can react to the interaction and experience kinematical heating, tidal effects and dynamical friction (the latter, a process often neglected in previous studies). We find that, in agreement with previous works, all spaces are rich in substructures, but that, contrary to previous works, the origin of these substructures - accreted or in-situ - cannot be determined for the following reasons. In all spaces considered (1) each satellite provides the origin of several independent over-densities; (2) over-densities of multiple satellites overlap; (3) satellites of different masses can produce similar substructures; (4) the overlap between the in-situ and the accreted population is considerable everywhere; and (5) in-situ stars also form substructures in response to the satellite(s') accretion. These points are valid even if the search is restricted to kinematically-selected halo stars only. As we are now entering the Gaia era, our results warn that extreme caution must be employed before interpreting over-densities in any of those spaces as evidence of relics of accreted satellites. Reconstructing the accretion history of our Galaxy will require a substantial amount of accurate spectroscopic data, that, complemented by the kinematic information, will possibly allow us to (chemically) identify accreted streams and measure their orbital properties.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据