4.6 Article

Thermal Buckling of Nanocomposite Stiffened Cylindrical Shells Reinforced by Functionally Graded Wavy Carbon Nanotubes with Temperature-Dependent Properties

期刊

APPLIED SCIENCES-BASEL
卷 7, 期 12, 页码 -

出版社

MDPI
DOI: 10.3390/app7121223

关键词

carbon nanotube; GDQ method; stiffened cylindrical shells; thermal buckling; TSDT

向作者/读者索取更多资源

We study the thermal buckling behavior of cylindrical shells reinforced with Functionally Graded (FG) wavy Carbon NanoTubes (CNTs), stiffened by stringers and rings, and subjected to a thermal loading. The equilibrium equations of the problem are built according to the Third-order Shear Deformation Theory (TSDT), whereas the stiffeners are modeled as Euler Bernoulli beams. Different types of FG distributions of wavy CNTs along the radial direction of the cylinder are herein considered, and temperature-dependent material properties are estimated via a micromechanical model, under the assumption of uniform distribution within the shell and through the thickness. A parametric investigation based on the Generalized Differential Quadrature (GDQ) method aims at investigating the effects of the aspect ratio and waviness index of CNTs on the thermal buckling of FG nanocomposite stiffened cylinders, reinforced with wavy single-walled CNTs. Some numerical examples are here provided in order to verify the accuracy of the proposed formulation and to investigate the effects of several parameters-including the volume fraction, the distribution pattern of wavy CNTs, and the cylinder thickness-on the thermal buckling behavior of the stiffened cylinders made of CNT-reinforced composite (CNTRC) material.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据