4.5 Article

The synergistic effect of Selenium (selenite, -SeO32-) dose and irradiance intensity in Chlorella cultures

期刊

AMB EXPRESS
卷 7, 期 -, 页码 -

出版社

SPRINGEROPEN
DOI: 10.1186/s13568-017-0348-7

关键词

Chlorella; Chlorophyll fluorescence; Growth; Irradiance intensity; Photosynthesis; Selenium incorporation

资金

  1. Ministry of Education, Youth and Sports of the Czech Republic [LO1416]
  2. UNESCO

向作者/读者索取更多资源

Microalgae are able to metabolize inorganic selenium (Se) to organic forms (e.g. Se-proteins); nevertheless at certain Se concentration culture growth is inhibited. The aim of this work was to confirm the hypothesis that the limit of Se tolerance in Chlorella cultures is related to photosynthetic performance, i.e. depends on light intensity. We studied the relation between the dose and irradiance to find the range of Se tolerance in laboratory and outdoor cultures. At low irradiance (250 mu mol photons m(-2) s(-1)), the daily dose of Se below 8.5 mg per g of biomass (< 20 mu M) partially stimulated the photosynthetic activity (relative electron transport rate) and growth of Chlorella cultures (biomass density of similar to 1.5 g DW L-1) compared to the control (no Se added). It was accompanied by substantial Se incorporation to microalgae biomass (similar to 0.5 mg Se g(-1) DW). When the Se daily dose and level of irradiance were doubled (16 mg Se g(-1) DW; 500 mu mol photons m(-2) s(-1)), the photosynthetic activity and growth were stimulated for several days and ample incorporation of Se to biomass (7.1 mg g(-1) DW) was observed. Yet, the same Se daily dose under increased irradiance (750 mu mol photons m(-2) s(-1)) caused the synergistic effect manifested by significant inhibition of photosynthesis, growth and lowered Se incorporation to biomass. In the present experiments Chl fluorescence techniques were used to monitor photosynthetic activity for determination of optimal Se doses in order to achieve efficient incorporation without substantial inhibition of microalgae growth when producing Se-enriched biomass.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据