3.8 Article

Buckling Analysis of Anti-Symmetric Cross-Ply Laminated Composite Plates Under Different Boundary Conditions

期刊

INTERNATIONAL APPLIED MECHANICS
卷 52, 期 6, 页码 661-676

出版社

SPRINGER
DOI: 10.1007/s10778-016-0787-x

关键词

laminated composite plates; higher-order shear deformation theory; buckling; theoretical solutions; various boundary conditions

向作者/读者索取更多资源

The buckling analysis of anti-symmetric cross-ply laminated composite plates under different boundary conditions is examined by using a refined higher order exponential shear deformation theory. The theory, which has strong similarity with classical plate theory in many aspects, accounts for a quadratic variation of the transverse shear strains across the thickness and satisfies the zero traction boundary conditions on the top and bottom surfaces of the plate without using shear correction factors. The number of independent unknowns in the present theory is four, as against five in other shear deformation theories. In this investigation, the equations of motion for simply supported thick laminated rectangular plates are derived and obtained through the use of Hamilton's principle. The closed-form solutions of anti-symmetric cross-ply and angle-ply laminates are obtained using Navier solution. Numerical results for critical buckling loads anti-symmetric cross-ply laminated composite plates are presented. The validity of the present study is demonstrated by comparison with other higher-order solutions reported in the literature. It can be concluded that the proposed theory is accurate and simple in solving the buckling behaviors of anti-symmetric cross-ply laminated composite plates under different boundary conditions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据