3.8 Article

Comparison Study on Four Biodegradable Polymer Coatings for Controlling Magnesium Degradation and human Endothelial Cell Adhesion and Spreading

期刊

ACS BIOMATERIALS SCIENCE & ENGINEERING
卷 3, 期 6, 页码 936-950

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsbiomaterials.7b00215

关键词

bioresorbable magnesium implants; polymer coatings; bioresorbable cardiovascular scaffold; human umbilical vein endothelial cells; in vitro direct culture method

资金

  1. American Heart Association [AFIA 12SDG12220014]
  2. U.S. National Science Foundation for Materials Connection Research for Undergraduate Research program (MacREU) [DMR-1359136]
  3. Department of Education for Hispanic Service Institutions Summer Bridge to Research program [P031C110131]

向作者/读者索取更多资源

Magnesium (Mg)-based bioresorbable cardiovascular scaffold (BCS) is a promising alternative to conventional permanent cardiovascular stents, but it faces the challenges of rapid degradation and poor endothelium recovery after device degradation. To address these challenges, we investigated poly(L-lactic acid) (PLLA), poly(lactic-co-glycolic acid) (PLGA) (90:10), PLGA (50:50), and polycaprolactone (PCL) coatings on Mg, respectively, and evaluated their surface and biological properties. Intact polymer coatings with complete coverage on Mg substrate were achieved. The biological performance of the materials was evaluated by culturing with human umbilical vein endothelial cells (HUVECs) in vitro using the direct culture method. The pH of the culture media and Mg2+ and Ca2+ ion concentrations in the media were measured after culture to characterize the degradation rate of the materials in vitro. The results showed that the PLGA (50:50) coating improved the adhesion and spreading of HUVECs the most among the four polymer coatings. Moreover, we found three possible factors that promoted HUVECs directly attached on the surface of PLGA (50:50) coated Mg: (1) the higher concentration of Mg2+ ions released into culture media with a concentration range of 9-15 mM; (2) the lower Ca2+ ion concentration in culture media at 1.3-1.6 mM; and (3) the favorable surface conditions of PLGA (50:50), when compared with the other sample groups. This in vitro study provided the first evidence that the PLGA (50:50) is a promising coating material for Mg-based biodegradable metals toward potential cardiovascular or neurovascular applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据