3.8 Article

Hierarchically Porous Calcium Carbonate Scaffolds for Bone Tissue Engineering

期刊

ACS BIOMATERIALS SCIENCE & ENGINEERING
卷 3, 期 10, 页码 2457-2469

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsbiomaterials.7b00301

关键词

supercritical CO2; hierarchically porous CaCO3 scaffolds; osteoblast MC3T3 cells; osteoblast adhesion; proliferation and differentiation; matrix mineralization

资金

  1. New York University Abu Dhabi

向作者/读者索取更多资源

Hierarchically porous CaCO3 scaffolds comprised of micro- (diameter = 2.0 +/- 0.3 mu m) and nano-sized (diameter = 50.4 +/- 14.4 nm) pores were fabricated on silicon substrates using a supercritical CO2-based process. Differentiated human THP-1 monocytes exposed to the CaCO3 scaffolds produced negligible levels of the inflammatory cytokine tumor necrosis factor-alpha (TNF-alpha), confirming the lack of immunogenicity of the scaffolds. Extracellular matrix (ECM) proteins, vitronectin and fibronectin, displayed enhanced adsorption to the scaffolds compared to the silicon controls. ECM protein-coated CaCO3 scaffolds promoted adhesion, growth, and proliferation of osteoblast MC3T3 cells. MC3T3 cells grown on the CaCO3 scaffolds produced substantially higher levels of transforming growth factor-beta and vascular endothelial growth factor A, which regulate osteoblast differentiation, and exhibited markedly increased alkaline phosphatase activity, a marker of early osteoblast differentiation, compared to controls. Moreover, the CaCO3 scaffolds stimulated matrix mineralization (calcium deposition), an end point of advanced osteoblast differentiation and an important biomarker for bone tissue formation. Taken together, these results demonstrate the significant potential of the hierarchically porous CaCO3 scaffolds for bone tissue engineering applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据