4.5 Article

Lattice Metamaterials with Mechanically Tunable Poisson's Ratio for Vibration Control

期刊

PHYSICAL REVIEW APPLIED
卷 7, 期 2, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevApplied.7.024012

关键词

-

资金

  1. National Science Foundation [CMMI-1437449, CMMI-1462270]
  2. Region 2 University Transportation Research Center (UTRC)
  3. Office of Naval Research
  4. Directorate For Engineering
  5. Div Of Civil, Mechanical, & Manufact Inn [1462270] Funding Source: National Science Foundation

向作者/读者索取更多资源

Metamaterials with artificially designed architectures are increasingly considered as new paradigmatic material systems with unusual physical properties. Here, we report a class of architected lattice metamaterials with mechanically tunable negative Poisson's ratios and vibration-mitigation capability. The proposed lattice metamaterials are built by replacing regular straight beams with sinusoidally shaped ones, which are highly stretchable under uniaxial tension. Our experimental and numerical results indicate that the proposed lattices exhibit extreme Poisson's-ratio variations between -0.7 and 0.5 over large tensile deformations up to 50%. This large variation of Poisson's-ratio values is attributed to the deformation pattern switching from bending to stretching within the sinusoidally shaped beams. The interplay between the multiscale (ligament and cell) architecture and wave propagation also enables remarkable broadband vibration-mitigation capability of the lattice metamaterials, which can be dynamically tuned by an external mechanical stimulus. The material design strategy provides insights into the development of classes of architected metamaterials with potential applications including energy absorption, tunable acoustics, vibration control, responsive devices, soft robotics, and stretchable electronics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据