4.5 Article

Mechanical Signature of Heat Generated in a Current-Driven Ferromagnetic Resonance System

期刊

PHYSICAL REVIEW APPLIED
卷 8, 期 1, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevApplied.8.014038

关键词

-

资金

  1. National Research Foundation of Korea (NRF) grant - Korea Government (MSIP) [NRF-2015R1C1A1A02037070, NRF-2015R1A2A1A15055714]

向作者/读者索取更多资源

In a current-driven ferromagnetic resonance (FMR) system, heat generated by time-dependent magnetoresistance effects, caused by magnetization precession, cannot be overlooked. Here, we describe the generated heat by magnetization motion under electric current in a freestanding nanoelectromechanical resonator fashioned from a permalloy (Py)/Pt bilayer. By piezoresistive transduction of Pt, the mechanical mode is electrically detected at room temperature and the internal heat in Py excluding thermoelectric effects is quantified as a shift of the mechanical resonance. We find that the measured spectral shifts correspond to the FMR, which is further verified from the spin-torque FMR measurement. Furthermore, the angular dependence of the mechanical reaction on an applied magnetic field reveals that the full accounting of FMR heat dissipation requires the time-dependent magnetoresistance effect.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据