4.6 Article

Effect of the molecular weight of water-soluble chitosan on its fat-/cholesterol-binding capacities and inhibitory activities to pancreatic lipase

期刊

PEERJ
卷 5, 期 -, 页码 -

出版社

PEERJ INC
DOI: 10.7717/peerj.3279

关键词

Water-soluble chitosan; Weight-average molecular weight; Fat; Cholesterol; Pancreatic lipase

资金

  1. NSFC-Shandong [U1606403, 2013CXB80203]

向作者/读者索取更多资源

Background. Obesity has become a worldwide burden to public health in recent decades. Given that obesity is caused by an imbalance between caloric intake and expenditure, and that dietary fat is the most important energy source of all macronutrients (by providing the most calories), a valuable strategy for obesity treatment and prevention is to block fat absorption via the gastrointestinal pathway. In this study, the fat- and cholesterol-binding capacities and the inhibition of pancreatic lipase by water-soluble chitosan (WSC) with different weight-average molecular weight (Mw) were tested and compared in vitro, in order to determine the anti-obesity effects of WSC and the influence of its Mw. Methods. In this study, WSC with different Mw (similar to 1,000, similar to 3,000, similar to 5,000, similar to 7,000 and similar to 9,000 Da) were prepared by oxidative degradation assisted with microwave irradiation. A biopharmaceutical model of the digestive tract was used to determine the fat- and cholesterol-binding capacity of WSC samples. The pancreatic lipase assays were based on p-nitrophenyl derivatives. Results. The results showed that all of the WSC samples exhibit great fat- and cholesterol-binding capacities. Within the testing range, 1 g of WSC sample could absorb 28 g of peanut oil or 50-65 mg of cholesterol, which are both significantly higher than the ability of cellulose to do the same. Meanwhile, all the WSC samples were proven to be able to inhibit pancreatic lipase activity to some extent. Discussion. Based on the results, we suggest that there is a significant correlation between the binding capacity of WSC and its Mw, as WSC2 (similar to 3,000 Da) shows the highest fat- and cholesterol-binding capacities (7.08 g g(-1) and 63.48 mg g(-1), respectively), and the binding ability of WSC declines as its Mw increases or decreases from 3,000 Da. We also suggest WSC as an excellent resource in the development of functional foods against obesity for its adsorption, electrostatic binding and entrapment of cholesterol, fat, sterols and triglycerides in the diet.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据